Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
2.
Signal Transduct Target Ther ; 8(1): 42, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2230292

RESUMO

The Omicron variants of SARS-CoV-2, primarily authenticated in November 2021 in South Africa, has initiated the 5th wave of global pandemics. Here, we systemically examined immunological and metabolic characteristics of Omicron variants infection. We found Omicron resisted to neutralizing antibody targeting receptor binding domain (RBD) of wildtype SARS-CoV-2. Omicron could hardly be neutralized by sera of Corona Virus Disease 2019 (COVID-19) convalescents infected with the Delta variant. Through mass spectrometry on MHC-bound peptidomes, we found that the spike protein of the Omicron variants could generate additional CD8 + T cell epitopes, compared with Delta. These epitopes could induce robust CD8 + T cell responses. Moreover, we found booster vaccination increased the cross-memory CD8 + T cell responses against Omicron. Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells. Consistently, a greater fraction of memory CD8 + T cells existed in Omicron stimulated peripheral blood mononuclear cells (PBMCs). In addition, CD147 was also a receptor for the Omicron variants, and CD147 antibody inhibited infection of Omicron. CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia. Taken together, our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , COVID-19/genética , Leucócitos Mononucleares , SARS-CoV-2 , Anticorpos Neutralizantes , Epitopos , Camundongos Transgênicos
4.
J Med Virol ; 94(9): 4287-4293, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1864337

RESUMO

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, sublineages BA.1 and BA.2, recently became the dominant variants of concern (VOCs) with significantly higher transmissibility than any other variant appeared and markedly greater resistance to neutralization antibodies and original ancestral WA1 spike-matched vaccine. Therefore, it is urgent to develop vaccines against VOCs like Omicron. Unlike the new booming messenger RNA (mRNA) vaccine, protein vaccines have been used for decades to protect people from various kinds of viral infections and have advantages with their inexpensive production protocols and their relative stability in comparison to the mRNA vaccine. Here, we show that sera from BA.1 spike protein vaccinated mice mainly elicited neutralizing antibodies against BA.1 itself. However, a booster with BA.1 spike protein or a bivalent vaccine composed of D614G and BA.1 spike protein-induced not only potent neutralizing antibody response against D614G and BA.1 pseudovirus, but also against BA.2, other four SARS-CoV-2 VOCs (Alpha, Beta, Gamma, and Delta) and SARS-CoV-2-related coronaviruses (pangolin CoV GD-1 and bat CoV RsSHC014). The two recombinant spike protein vaccines method described here lay a foundation for future vaccine development for broad protection against pan-sarbecovirus.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia
5.
MedComm (2020) ; 3(2): e143, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1850141

RESUMO

The SARS-CoV-2 Omicron BA.1 variant of concern contains more than 30 mutations in the spike protein, with half of these mutations localized in the receptor-binding domain (RBD). Emerging evidence suggests that these large number of mutations impact the neutralizing efficacy of vaccines and monoclonal antibodies. We investigated the relative contributions of spike protein and RBD mutations in Omicron BA.1 variants on infectivity, cell-cell fusion, and their sensitivity to neutralization by monoclonal antibodies or vaccinated sera from individuals who received homologous (CoronaVac, SinoPharm) or heterologous (CoronaVac-BNT162b2, BioNTech) and nonhuman primates that received a recombinant RBD protein vaccine. Our data overall reveal that the mutations in the spike protein reduced infectivity and cell-cell fusion compared to the D614G variant. The impaired infectivity and cell-cell fusion were dependent on non-RBD mutations. We also find reduced sensitivity to neutralization by monoclonal antibodies and vaccinated sera. However, our results also show that nonhuman primates receiving a recombinant RBD protein vaccine show substantial neutralization activity. Our study sheds light on the molecular differences in neutralizing antibody escape by the Omicron BA.1 variant, and highlights the promise of recombinant RBD vaccines in neutralizing the threat posed by the Omicron BA.1 variant.

6.
Front Microbiol ; 13: 735363, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1809432

RESUMO

Objective: We aimed to evaluate the performance of nanopore amplicon sequencing detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples. Method: We carried out a single-center, prospective cohort study in a Wuhan hospital and collected a total of 86 clinical samples, including 54 pharyngeal swabs, 31 sputum samples, and 1 fecal sample, from 86 patients with coronavirus disease 2019 (COVID-19) from Feb 20 to May 15, 2020. We performed parallel detection with nanopore-based genome amplification and sequencing (NAS) on the Oxford Nanopore Technologies (ONT) minION platform and routine reverse transcription quantitative polymerase chain reaction (RT-qPCR). In addition, 27 negative control samples were detected using the two methods. The sensitivity and specificity of NAS were evaluated and compared with those of RT-qPCR. Results: The viral read number and reference genome coverage were both significantly different between the two groups of samples, and the latter was a better indicator for SARS-CoV-2 detection. Based on the reference genome coverage, NAS revealed both high sensitivity (96.5%) and specificity (100%) compared with RT-qPCR (80.2 and 96.3%, respectively), although the samples had been stored for half a year before the detection. The total time cost was less than 15 h, which was acceptable compared with that of RT-qPCR (∼2.5 h). In addition, the reference genome coverage of the viral reads was in line with the cycle threshold value of RT-qPCR, indicating that this number could also be used as an indicator of the viral load in a sample. The viral load in sputum might be related to the severity of the infection, particularly in patients within 4 weeks after onset of clinical manifestations, which could be used to evaluate the infection. Conclusion: Our results showed the high sensitivity and specificity of the NAS method for SARS-CoV-2 detection compared with RT-qPCR. The sequencing results were also used as an indicator of the viral load to display the viral dynamics during infection. This study proved the wide application prospect of nanopore sequencing detection for SARS-CoV-2 and may more knowledge about the clinical characteristics of COVID-19.

7.
J Med Virol ; 94(8): 3791-3800, 2022 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1802449

RESUMO

The emerging coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causative agent of coronavirus disease 2019 (COVID-19), which has become a severe threat to global public health and local economies. In this study, several single-chain antibody fragments that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein were identified and used to construct human-mouse chimeric antibodies and humanized antibodies. These antibodies exhibited strong binding to RBD and neutralization activity towards a SARS-CoV-2 pseudovirus. Moreover, these antibodies recognize different RBD epitopes and exhibit synergistic neutralizing activity. These provide candidate to combination use or bispecific antibody to potential clinical therapy for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , Humanos , Camundongos , Testes de Neutralização , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus
8.
PLoS One ; 17(3): e0264526, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1742006

RESUMO

With the advancements and developments in China's tourism industry, various autonomous forms of tourism have been gaining prominence. As such, to facilitate tourists and provide them with maximum experience while economizing on time and cost is essential. One approach toward achieving this is the optimization of tourism routes. However, so far the studies on this approach have focused primarily on inland tourist sites and have lacked a geographic perspective. Therefore, this study undertook the tourism resource data of Lushunkou District of 2020, used the ArcGIS accessibility evaluation model to analyze tourism resources, and finally used the Vehicle Routing Problem of network analysis technology to optimize the tourism route of Lushunkou District and obtain the general overall intellectual framework and technical methods for tourism route optimization. The results showed that the ArcGIS accessibility evaluation model could be used to integrate resources in the tourism area before using the Vehicle Routing Problem to optimize the analysis of tourism routes, thereby enabling the separation of different types of tourism. These divisions were based on the Vehicle Routing Problem to optimize routes for one-day and two-day tours. A new method and model for optimization for tourism routes was constructed to provide a basis and reference for the optimization of tourism routes in similar cities. The observations and results of the present study can facilitate the government in developing the tourism industry and maximizing the benefits obtained from them. Further, travel agencies and tourists will have the provision of designing optimum tourism routes.


Assuntos
Turismo , Viagem , Cidades , Indústrias
9.
Precis Clin Med ; 4(3): 149-154, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1467398

RESUMO

To assess the impact of the key non-synonymous amino acid substitutions in the RBD of the spike protein of SARS-CoV-2 variant B.1.617.1 (dominant variant identified in the current India outbreak) on the infectivity and neutralization activities of the immune sera, L452R and E484Q (L452R-E484Q variant), pseudotyped virus was constructed (with the D614G background). The impact on binding with the neutralizing antibodies was also assessed with an ELISA assay. Pseudotyped virus carrying a L452R-E484Q variant showed a comparable infectivity compared with D614G. However, there was a significant reduction in the neutralization activity of the immune sera from non-human primates vaccinated with a recombinant receptor binding domain (RBD) protein, convalescent patients, and healthy vaccinees vaccinated with an mRNA vaccine. In addition, there was a reduction in binding of L452R-E484Q-D614G protein to the antibodies of the immune sera from vaccinated non-human primates. These results highlight the interplay between infectivity and other biologic factors involved in the natural evolution of SARS-CoV-2. Reduced neutralization activities against the L452R-E484Q variant will have an impact on health authority planning and implications for the vaccination strategy/new vaccine development.

10.
Signal Transduct Target Ther ; 6(1): 368, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1467093

RESUMO

The long-term immunity and functional recovery after SARS-CoV-2 infection have implications in preventive measures and patient quality of life. Here we analyzed a prospective cohort of 121 recovered COVID-19 patients from Xiangyang, China at 1-year after diagnosis. Among them, chemiluminescence immunoassay-based screening showed 99% (95% CI, 98-100%) seroprevalence 10-12 months after infection, comparing to 0.8% (95% CI, 0.7-0.9%) in the general population. Total anti-receptor-binding domain (RBD) antibodies remained stable since discharge, while anti-RBD IgG and neutralization levels decreased over time. A predictive model estimates 17% (95% CI, 11-24%) and 87% (95% CI, 80-92%) participants were still 50% protected against detectable and severe re-infection of WT SARS-CoV-2, respectively, while neutralization levels against B.1.1.7 and B.1.351 variants were significantly reduced. All non-severe patients showed normal chest CT and 21% reported COVID-19-related symptoms. In contrast, 53% severe patients had abnormal chest CT, decreased pulmonary function or cardiac involvement and 79% were still symptomatic. Our findings suggest long-lasting immune protection after SARS-CoV-2 infection, while also highlight the risk of immune evasive variants and long-term consequences for COVID-19 survivors.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Memória Imunológica , Modelos Imunológicos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , COVID-19/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia Computadorizada por Raios X
11.
Signal Transduct Target Ther ; 6(1): 347, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1437669

RESUMO

SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape, compromising the effectiveness of existing vaccines and neutralizing antibodies. An in-depth investigation on COVID-19 pathogenesis is urgently needed to develop a strategy against SARS-CoV-2 variants. Here, we identified CD147 as a universal receptor for SARS-CoV-2 and its variants. Meanwhile, Meplazeumab, a humanized anti-CD147 antibody, could block cellular entry of SARS-CoV-2 and its variants-alpha, beta, gamma, and delta, with inhibition rates of 68.7, 75.7, 52.1, 52.1, and 62.3% at 60 µg/ml, respectively. Furthermore, humanized CD147 transgenic mice were susceptible to SARS-CoV-2 and its two variants, alpha and beta. When infected, these mice developed exudative alveolar pneumonia, featured by immune responses involving alveoli-infiltrated macrophages, neutrophils, and lymphocytes and activation of IL-17 signaling pathway. Mechanistically, we proposed that severe COVID-19-related cytokine storm is induced by a "spike protein-CD147-CyPA signaling axis": Infection of SARS-CoV-2 through CD147 initiated the JAK-STAT pathway, which further induced expression of cyclophilin A (CyPA); CyPA reciprocally bound to CD147 and triggered MAPK pathway. Consequently, the MAPK pathway regulated the expression of cytokines and chemokines, which promoted the development of cytokine storm. Importantly, Meplazumab could effectively inhibit viral entry and inflammation caused by SARS-CoV-2 and its variants. Therefore, our findings provided a new perspective for severe COVID-19-related pathogenesis. Furthermore, the validated universal receptor for SARS-CoV-2 and its variants can be targeted for COVID-19 treatment.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Basigina/antagonistas & inibidores , Basigina/metabolismo , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Síndrome da Liberação de Citocina/tratamento farmacológico , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , Basigina/genética , COVID-19/genética , Chlorocebus aethiops , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , Células Vero
14.
Innovation (Camb) ; 2(3): 100138, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1275766
15.
Int J Med Sci ; 18(6): 1356-1362, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1089155

RESUMO

Cytokine release syndrome (CRS) may be the key factor in the pathology of severe coronavirus disease 2019 (COVID-19). As a major driver in triggering CRS in patients with COVID-19, interleukin-6 (IL-6) appears to be a promising target for therapeutics. The results of inhibiting both trans- and classical- signaling with marketed IL-6 inhibitors (tocilizumab, siltuximab and sarilumab) in severe COVID-19 patients are effective based on several small studies and case reports thus far. In this review, we described the evidence of the IL-6 response in patients with COVID-19, clarified the pathogenesis of the role of IL-6-mediated CRS in severe COVID-19, and highlighted the rationale for the use of anti-IL-6 agents and key information regarding the potential features of these IL-6 inhibitors in COVID-19 patients.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Interleucina-6/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , COVID-19/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Humanos , Interleucina-6/antagonistas & inibidores , Tratamento Farmacológico da COVID-19
16.
Sci Rep ; 10(1): 21849, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: covidwho-977276

RESUMO

This study aimed to determine the characteristics of CT changes in patients with severe coronavirus disease 2019 (COVID-19) based on prognosis. Serial CT scans in 47 patients with severe COVID-19 were reviewed. The patterns, distribution and CT score of lung abnormalities were assessed. Scans were classified according to duration in weeks after onset of symptoms. These CT abnormalities were compared between discharged and dead patients. Twenty-six patients were discharged, whereas 21 passed away. Discharged patients were characterized by a rapid rise in CT score in the first 2 weeks followed by a slow decline, presence of reticular and mixed patterns from the second week, and prevalence of subpleural distribution of opacities in all weeks. In contrast, dead patients were characterized by a progressive rise in CT score, persistence of ground-glass opacity and consolidation patterns in all weeks, and prevalence of diffuse distribution from the second week. CT scores of death group were significantly higher than those of discharge group (P < 0.05). The CT changes differed between the discharged and dead patients. An understanding of these differences can be of clinical significance in the assessment of the prognosis of severe COVID-19 patients.


Assuntos
COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto Jovem
17.
Signal Transduct Target Ther ; 5(1): 283, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: covidwho-957563

RESUMO

In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.


Assuntos
Basigina/genética , COVID-19/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Basigina/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Pandemias , Ligação Proteica/imunologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
18.
Nat Metab ; 2(12): 1391-1400, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-947555

RESUMO

Responsible for the ongoing coronavirus disease 19 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through binding of the viral spike protein (SARS-2-S) to the cell-surface receptor angiotensin-converting enzyme 2 (ACE2). Here we show that the high-density lipoprotein (HDL) scavenger receptor B type 1 (SR-B1) facilitates ACE2-dependent entry of SARS-CoV-2. We find that the S1 subunit of SARS-2-S binds to cholesterol and possibly to HDL components to enhance viral uptake in vitro. SR-B1 expression facilitates SARS-CoV-2 entry into ACE2-expressing cells by augmenting virus attachment. Blockade of the cholesterol-binding site on SARS-2-S1 with a monoclonal antibody, or treatment of cultured cells with pharmacological SR-B1 antagonists, inhibits HDL-enhanced SARS-CoV-2 infection. We further show that SR-B1 is coexpressed with ACE2 in human pulmonary tissue and in several extrapulmonary tissues. Our findings reveal that SR-B1 acts as a host factor that promotes SARS-CoV-2 entry and may help explain viral tropism, identify a possible molecular connection between COVID-19 and lipoprotein metabolism, and highlight SR-B1 as a potential therapeutic target to interfere with SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Lipoproteínas HDL/metabolismo , SARS-CoV-2/fisiologia , Receptores Depuradores Classe B/metabolismo , Internalização do Vírus , Linhagem Celular , Colesterol/metabolismo , Suscetibilidade a Doenças , Humanos , Ligação Proteica , Receptores Virais , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Ligação Viral
19.
Engineering (Beijing) ; 6(10): 1122-1129, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-623838

RESUMO

The real-time reverse transcription-polymerase chain reaction (RT-PCR) detection of viral RNA from sputum or nasopharyngeal swab had a relatively low positive rate in the early stage of coronavirus disease 2019 (COVID-19). Meanwhile, the manifestations of COVID-19 as seen through computed tomography (CT) imaging show individual characteristics that differ from those of other types of viral pneumonia such as influenza-A viral pneumonia (IAVP). This study aimed to establish an early screening model to distinguish COVID-19 from IAVP and healthy cases through pulmonary CT images using deep learning techniques. A total of 618 CT samples were collected: 219 samples from 110 patients with COVID-19 (mean age 50 years; 63 (57.3%) male patients); 224 samples from 224 patients with IAVP (mean age 61 years; 156 (69.6%) male patients); and 175 samples from 175 healthy cases (mean age 39 years; 97 (55.4%) male patients). All CT samples were contributed from three COVID-19-designated hospitals in Zhejiang Province, China. First, the candidate infection regions were segmented out from the pulmonary CT image set using a 3D deep learning model. These separated images were then categorized into the COVID-19, IAVP, and irrelevant to infection (ITI) groups, together with the corresponding confidence scores, using a location-attention classification model. Finally, the infection type and overall confidence score for each CT case were calculated using the Noisy-OR Bayesian function. The experimental result of the benchmark dataset showed that the overall accuracy rate was 86.7% in terms of all the CT cases taken together. The deep learning models established in this study were effective for the early screening of COVID-19 patients and were demonstrated to be a promising supplementary diagnostic method for frontline clinical doctors.

20.
Chin Med ; 15: 62, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-597661

RESUMO

BACKGROUND: At present, coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2, is spreading all over the world, with disastrous consequences for people of all countries. The traditional Chinese medicine prescription Dayuanyin (DYY), a classic prescription for the treatment of plague, has shown significant effects in the treatment of COVID-19. However, its specific mechanism of action has not yet been clarified. This study aims to explore the mechanism of action of DYY in the treatment of COVID-19 with the hope of providing a theoretical basis for its clinical application. METHODS: First, the TCMSP database was searched to screen the active ingredients and corresponding target genes of the DYY prescription and to further identify the core compounds in the active ingredient. Simultaneously, the Genecards database was searched to identify targets related to COVID-19. Then, the STRING database was applied to analyse protein-protein interaction, and Cytoscape software was used to draw a network diagram. The R language and DAVID database were used to analyse GO biological processes and KEGG pathway enrichment. Second, AutoDock Vina and other software were used for molecular docking of core targets and core compounds. Finally, before and after application of DYY, the core target gene IL6 of COVID-19 patients was detected by ELISA to validate the clinical effects. RESULTS: First, 174 compounds, 7053 target genes of DYY and 251 genes related to COVID-19 were selected, among which there were 45 target genes of DYY associated with treatment of COVID-19. This study demonstrated that the use of DYY in the treatment of COVID-19 involved a variety of biological processes, and DYY acted on key targets such as IL6, ILIB, and CCL2 through signaling pathways such as the IL-17 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and cytokine-cytokine receptor interaction. DYY might play a vital role in treating COVID-19 by suppressing the inflammatory storm and regulating immune function. Second, the molecular docking results showed that there was a certain affinity between the core compounds (kaempferol, quercetin, 7-Methoxy-2-methyl isoflavone, naringenin, formononetin) and core target genes (IL6, IL1B, CCL2). Finally, clinical studies showed that the level of IL6 was elevated in COVID-19 patients, and DYY can reduce its levels. CONCLUSIONS: DYY may treat COVID-19 through multiple targets, multiple channels, and multiple pathways and is worthy of clinical application and promotion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA